Atomic Structure Review

Roles of Subatomic Particles

Protons (p+): Particle that identifies the atom and pulls the inner and outer electrons towards the center of the atom.

Neutrons (n°): Provide balance between the protons (p+) themselves and the proton/electron interaction.

Electrons (e⁻): Communication and bonding in the atomic structure

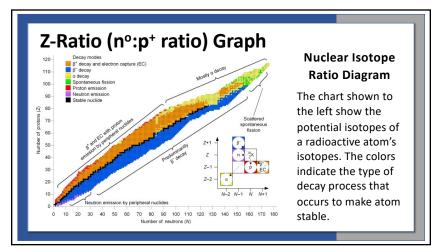
Isotopes

Every element is made up of multiple *isotopes*, forms of atom based on the relationship of neutrons and protons. All atoms of the same element have the same protons and electrons, but different numbers of neutrons.

Atomic Stability – Z-Ratio (no:p+ Ratio)

The Stability of an isotope of an atom is based on the relationship between protons (p⁺) and neutrons (n^o) in an atom. Atoms with too many or too new no will become unstable.

Z-Ratio


Ratio between the protons (p^+) and neutrons (n^o) in the atom.

Z-Ratio =
$$\frac{\#n^{\circ}(neutrons)}{\#p^{+}(protons)}$$

Most stable isotopes of elements have the following ratios:

Small (1 – 20): 1.0 – 1.2 Large (55 – 82): 1.4 – 1.5

Medium (1-54): 1.2-1.3No Stable Isotopes Above 82

Average Atomic Mass and Z-Ratios

The average atomic mass is based on the atomic mass of each isotope

%_{Abundance} \sum (Atomic Mass x Frac_{Abund}) Frac_{Abundance} =

For most elements the most stable isotope *commonly* has the highest fractional abundance and is closest to the average atomic mass.

Element: Sodium (Na)

Average Atomic Mass Stabile Isotope Additional Isotopes 22.99amu Sodium – 23 Na-22 Na-24 Z-Ratio = 1.10 (most common)