Subatomic Particles

The modern atomic model contains protons, electrons, and neutrons (+, -, and neutral)

Protons

In nucleus (center of atom), identifies atom, keep electrons within the outer portion of the atom

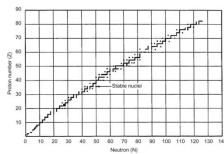
Electrons

Atomic communication, connection to other atoms, balancing protons in the atom

Neutrons

Barrier between protons/electrons, sheilding

Basic Structure


of the Atom

Includes electrons (e^{-}) , protons (p+), and neutrons (n°)

Elements The atomic number $(Z, \# protons, p^+)$ can be used to identify the type of element being studied on the periodic table Atomic number 26 Chemical symbol Element name **Iron** Atomic mass 55.847

Atomic Stability

Atomic Stability is based on ratio of protons : neutrons

Z-Ratio

(Z = Atomic Number)

The ratio of protons to neutrons (p+:no) in a stable atom ranges from 1:1 (small atoms) to 1:1.5 (large atoms)

Isotopes

Atoms can commonly have more than one ratio of protons and neutrons that are stable. The equations below will help calculate the number of each subatomic particle in an isotope of an element

Atomic Number = # Protons (p⁺) [Type of Atom]

Protons (p⁺) = # Electrons (e⁻) [Atoms Neutral]

Mass Number = # Protons + # Neutrons [Isotope Mass]

Neutrons (n°) = Mass Number - Atomic Number