Name		Period	
Lab 3 -	- Graphing in Science – Density		

Introduction

In this lab we will be practicing graphing in science by graphing the volume (independent, x-axis) vs. the mass (dependent, y-axis) for two liquids to find the liquids density.

Density and Graphing

Density (the mass of an object as a direct relationship to volume) can be measured directly by measuring the mass of a solid or liquid and comparing the mass of the volume as a ratio of mass to volume (m/v). The average density of the liquids can also be found as the slope of a graph of mass (y-axis) and volume (x-axis).

Density.
$$= \underline{(y_2 - y_1)} = \underline{(mass_2 - mass_1)}$$
 Given: (v_1, m_1) and (v_2, m_2) $(slope, m)$ $(x_2 - x_1)$ $(volume_2 - volume_1)$ (x_1, y_1) (x_2, y_2)

Lab Procedure

Mass and Volume data collection

- 1. Measure the mass of a 100mL graduated cylinder on the laboratory balance and tare (zero) the mass on the scale;
- 2. Add 20mL of solution A to the graduated cylinder and record the mass on data table;
- 3. Continue adding 20mL of solution A and recording mass until the volume reaches 100mL in the graduated cylinder (recording mass on data table);
- 4. Pour solution A back in the stock container, rinse the graduated cylinder, then repeat data collection with solution B.

Graphing the Data

- 1. Title the graph and label each axis (x-axis, volume of liquid (A or B), y-axis, mass of liquid (A or B);
- 2. Graph the data of A or B using a standard x-y linear plot, drawing a line of best fit through the data on the graph;
- 3. Calculate the slope (density) for each graph (A and B)

Data Tables

Solution A			Solution B							
Volume (mL)	Mass (g)		Volume (mL)	Mass (g)						
20mL			20mL							
40mL			40mL							
60mL			60mL							
80mL			80mL							
100mL			100mL							

Cal	lcu1	lati	ion	S
Sol	uti	on	Α	

Solution A								
Data Points $(graph)$ (x_1y_1)								
(-3 -7								
(x_2,y_2)								
Slope (m)								
Solution A	<u>'</u>							
Solution A Data Points (graph)								
Solution A Data Points (graph) (x ₁ y ₁)								
Data Points (graph)								
Data Points (graph)								
Data Points (graph)								
Data Points $(graph)$ (x_1y_1)								
Data Points $(graph)$ (x_1y_1)								
Data Points $(graph)$ (x_1y_1)								
Data Points $(graph)$ (x_1y_1)								
Data Points $(graph)$ (x_1y_1) (x_2,y_2)								
Data Points $(graph)$ (x_1y_1) (x_2,y_2)								
Data Points $(graph)$ (x_1y_1) (x_2,y_2)								