
Elements

The atomic number $(Z, \# protons, p^+)$ can be used to identify the type of element being studied on the periodic table

Atomic Number

of p⁺ and e⁻ Determines name and symbol of element

Avg Atomic Mass

The *mass* of an atom in atomic mass units (amu)

Isotope Notation

Isotopes are commonly written in two notation forms, based on the Atomic Number, Mass Number, and/or number of neutrons (n°)

 $_{\frac{23}{11}Na}$ Sodium-23

23 = Mass Number (*Top*) 11 = Atomic Number (*Bottom*) Na = Element (Sodium)

23 = Mass Number (*Left*) Sodium = Element (Na) Also: Na-23

Isotope Recap

Isotopes are Based on the Following Recap Table

Isotope Notation

xAyA

Element A - X

Subatomic Particles

Y = Atomic Number

Element Name, Element Symbol (A)

Number protons (p⁺)

Number electrons (e⁻)

X = Mass Number

Protons (p⁺) + Neutrons (n^o)

Neutrons (n^o) = Mass # - Atomic # Neutrons (n^o) = X - Y

3

Subatomic Particles

Counting Valence Electrons (e-) [Representative Groups]

Valence Electrons are based on group on the table

Group	Name	Val e	Group		Val e⁻
1A (1)	Alkali Metals	1	5A (15)	Pnictogens	5
2A (2)	Alkali Earth Metals	2	6A (16)	Chalcogens	6
3A (13)	Earth Metals	3	7A (17)	Halogens	7
4A (14)	Carbon Group	4	8A (18)	Noble Gases	8

Subatomic Particles

Counting Valence Electrons (e-) [Transition Metals]

Valence Electrons are based on group on the table Transition Metals can have 1-7 valence electrons (base 2)

Group	3B (3)	4B (4)	5B (5)	6B (6)	7B (7)	8B (8)	8B (9)	8B (10)	1B (11)	2B (12)
Element	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn
Possible Valence electron	3	3 4	2 3 4 5	2 3 4 6	2 3 4 5 7	2 3 6	2 3	2 3	1 2 3	2

5

Subatomic Particles

Ion Charge

Charge of an ion is based on the group on the periodic table

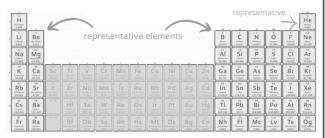
Cation (+ ion): Ions formed due to gaining electrons (metals)

Anion (- ion): lons formed due to losing electrons (non-metals)

Group	Val e⁻	Charge	Group	Val e	Charge	Group	Val e	Charge
1A (1)	1	1+	3A (13)	3	3+	6A (16)	6	2-
2A (2)	2	2+	4A (14)	4	4+ / 4-	7A (17)	7	1-
1B - 10B (3 - 12)	2 (Varies)	Varies	5A (15)	5	3-	8A (18)	8	No Charge

Periodic Blocks

Representative Elements


Elements that lose (*cation*, +) or gain (*anion*, -) a fixed number of valence electrons (val e⁻)

Representative Metals

Groups 1A (1), 2A (2), and Al Lose a fixed number of electrons

Metalloids

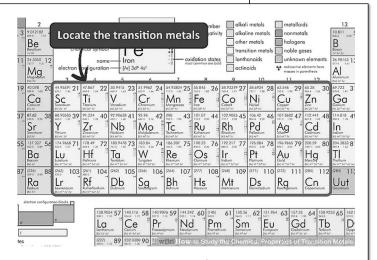
B, Si, Ge, As, Sb, Te, Po, At (*Zig Zag Line*)
Can lose (*cation*, +) or gain (*anion*, -) electrons (e⁻)

Representative Non-Metals

Groups 4A, 5A, 6A, 7A, and 8A (*Above Zig-Zag Line*)
Gain a fixed number of electrons

7

Periodic Blocks


Transition Elements

Elements in the *b groups* on the periodic table

The following elements below the zig-zag line are commonly also considered transition elements

3A (13): In, Tl 4A (14): Sn, Pb

5A (15): Bi

Transition Elements

Groups 1B (3) – 10B (12)

Periodic Blocks

Rare Earth Elements

Elements in the very bottom (*extended table, center*) of the table. Rare Earth elements are commonly unstable with no or few stable *isotopes*. These elements are common in nuclear radiation (*U, Pu, Ac, Ce, etc.*)

Rare Earth Elements consist of two groups: Lanthanides and Actinides

Elements above Uranium (*U*) are called *trans-uranium elements* and (*with exception of Np and Pu*) do not occur in nature naturally.

9

Formation of Ions

Comparing Ionization Energy and Electron Affinity

Energy required to remove an electron from atom to form an ion

Element Type	Ionization Energy	Electron Affinity
Metals (0 – 4 Valence Electrons)	Low IE (<i>easy to lose e</i> -) Atoms want to lose e-	Low EA (<i>Low desire to gain e</i> ⁻) Atoms don't want e ⁻
Non-Metals (5 – 8 Valence Electrons)	High IE (hard to lose e ⁻) Atoms don't want to lose e ⁻	High EA (<i>High desire to gain e</i> -) Atoms want to gain e-

In general: Atoms always want to lose heat (q), - to become more stable

Atomic Stability – Z-Ratio (no:p+ Ratio)

The Stability of an isotope of an atom is based on the relationship between protons (p⁺) and neutrons (n^o) in an atom. Atoms with too many or too new no will become unstable.

Z-Ratio

Ratio between the protons (p^+) and neutrons (n^o) in the atom.

Z-Ratio =
$$\frac{\#n^{\circ}(neutrons)}{\#p^{+}(protons)}$$

Most stable isotopes of elements have the following ratios:

Small (1-20): 1.0-1.2 Large (55-82): 1.4-1.5 Medium (1-54): 1.2-1.3 No Stable Isotopes Above No Stable Isotopes Above 82

11

Solving for Half-Life

The following are equations to solve for particles at given half-life

$$N(t) = \frac{N_0}{0.5^n}$$
 $N(t) = N_0 \left(\frac{1}{2}\right)^{\frac{t}{t_{1/2}}}$

n = number of HL N(t) = quantity remaining

t = elapsed time N_0 = initial quantity

 $t_{\,{\scriptscriptstyle 1/2}}\,$ = half-life of the substance