Valence Electron and Ion Structure

The following chart displays the basic atomic structure including the valence electrons and charges for atoms and ions of representative (1A-8A) elements

Group	1A	2A	1B – 10B	3A	4A	5A	6A	7A	8A
Number	1	2	3 - 12	13	14	15	16	17	18
Valance	1	2	2	3	4	5	6	7	8
Electrons (e ⁻)	1		2	3	4) 5	О	'	0
Atom Type	Alkali Metals	Alkali Earth Metals	Trans. Metals	Earth Metals	Carbon Group	Picogens	Chalcogen	Halogens	Noble Gases
Ion Charge	+1	+2	Var.	+3	+4	-3	-2	-1	0
Lose e Gain e	Lose 1	Lose 2	Var.	Lose 3	Lose 4	Gain 3	Gain 2	Gain 1	Gain 0
Ion Valence Electrons (e ⁻)	0	0	0	0	0	8	8	8	8

2

Ionic Bonding Atomic Ratios

The following chart shows atomic ratios based on +X and -Y ion Charges

+X	-Y	а	b	+X	-Y	а	b
+1	-1	1	1	+2	-2	1	1
+2	-1	1	2	+4	-2	1	2
+3	-1	1	3	+6	-2	1	3
+4	-1	1	4	+6	-3	1	2
+6	-1	1	6	+3	-2	2	3
+1	-2	2	1	+2	-3	3	2
+1	-3	3	1	+4	-3	3	4

 $[X_aY_b]$ and $+X \cdot a + -Y \cdot b = 0$

3

Ionic Compound Names

The following format is used for ionic compounds...

General Format

Cation (Charge) + Anion (Polyatomic Ion) -ending

Cations

Representative Metals Trans. Metals (*Charge*) **Positive Polyatomic Ions**

Anions

Representative Non-Metals (-ide) **Negative Polyatomic Ions**

> Standard (-ate, -ide, -ic) Conjugated (-ite, -ous)

Polyatomic Ion Endings

Polyatomic Ion Structures can change based on a changed ending

Common Binary Ion and Polyatomic Ion Endings

-ide ending	-ium ending	Special –ide endings
Binary Non-Metals Simple Polyatomic Ions	Specific Polyatomic Ions w/ + Charge	Most Polyatomic Ions -ine → -ide
Examples		H¹+: Hydride Ion
Cl ¹⁻ : Chloride Ion	NH ₄ ¹⁺ : Ammonium Ion	N³-: Nitride Ion
O ²⁻ : Oxide Ion	H ₃ O ¹⁺ : Hydronium Ion	P ³⁻ : Phosphide Ion
OH¹-: Hydroxide Ion*	Both lose 1e- in ion form	O ²⁻ : Oxide Ion
CN ¹⁻ : Cyanide Ion*		S ²⁻ : Sulfide Ion
*Polyatomic Ions		Se ²⁻ : Selenide Ion

5

Polyatomic Ion Endings

Polyatomic Ion Structures can change based on a changed ending

Common Binary Ion and Polyatomic Ion Endings

-ate ending
Standard Polyatomic Polyatomic Ion with and extra oxygen (+1 O)

Examples

 ClO_3^{1-} : Chlorate Ion CrO_4^{2-} : Chromate Ion ClO_4^{1-} : Perchlorate Ion NO_3^{1-} : Nitrate Ion $Cr_2O_7^{2-}$: Dichromate Ion BrO_4^{1-} : Perbromate Ion SO_4^{2-} : Sulfate Ion $C_2O_4^{2-}$: Oxalate Ion MnO_4^{1-} : Manganate Ion

 PO_4^{2-} : Phosphate Ion CO_3^{2-} : Carbonate Ion

6

Polyatomic Ion Endings

Polyatomic Ion Structures can change based on a changed ending

Common Binary Ion and Polyatomic Ion Endings

-ite ending
Polyatomic Ion with one
fewer oxygen (-1 oxygen)

hypo__-ite ending
Polyatomic Ion with two
fewer oxygens (-2 oxy)

Examples

 ClO_2^{1-} : Chlorite Ion CrO_3^{2-} : Chromite Ion ClO^{1-} : Hypochlorate Ion NO_2^{1-} : Nitrite Ion CO_3^{2-} : Carbonite Ion NO^{1-} : Hyponitrite Ion CO^{2-} : Hypocarbonite Ion PO_3^{2-} : Phosphite Ion SO^{2-} : Hyposulfite Ion

7

Polyatomic Ion Chart

The following is a list of common polyatomic ions

Polyatomic Ion	lon Formula	Polyatomic Ion	lon Formula	Polyatomic Ion	lon Formula
Ammonium	NH ₄ ¹⁺	Hydronium	H ₃ O ¹⁺	Carbonate	CO ₃ ²⁻
Nitrate	NO ₃ ¹⁻	Cyanide	CN ¹⁻	Sulfate	SO ₄ ²⁻
Fluorate	FO ₃ ¹⁻	Hydroxide	OH ¹⁻	Chromate	CrO ₄ ²⁻
Chlorate	CIO ₃ ¹⁻	Acetate	C ₂ H ₃ O ₂ ¹⁻	Dichromate	Cr ₂ O ₇ ²⁻
Bromate	BrO ₃ ¹⁻	Permanganate	MnO ₄ ¹-	Oxalate	C ₂ O ₄ ²⁻
lodate	IO ₃ ¹⁻	Bicarbonate	HCO ₃ ¹⁻	Phosphate	PO ₄ ³⁻

8

Polyatomic Ion Conjugations

Some polyatomic ions can be changed by change number of oxygens

-ate (Base)	lon Formula	-ite (-1 oxy)	lon Formula	perite (+1 oxy)	lon Formula
Chlorate	CIO ₃ ¹⁻	Chlorite	CIO ₂ ¹⁻	Perchlorate	CIO ₄ 1-
Bromate	BrO ₃ ¹⁻	Bromite	BrO ₂ ¹⁻	Perbromate	BrO ₄ 1-
Nitrate	NO ₃ ¹⁻	Nitrite	NO ₂ ¹⁻		
Carbonate	CO ₃ ²⁻	Carbonite	CO ₂ ²⁻	Hypoite	(-2 oxy)
Sulfate	SO ₄ ²⁻	Sulfite	SO ₃ ²⁻	Hypochlorite	CIO ¹⁻
Phosphate	PO ₄ ³⁻	Phosphite	PO ₃ ³⁻	Hypocarbonite	CO ²⁻

q