

1

Subatomic Particles

Counting Valence Electrons (e-) [Representative Groups]

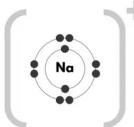
Valence Electrons are based on group on the table

Group	Name	Val e	Group		Val e⁻
1A (1)	Alkali Metals	1	5A (15)	Pnictogens	5
2A (2)	Alkali Earth Metals	2	2 6A (16) Chalcogens		6
3A (13)	Earth Metals	3	3 7A (17) Halogens		7
4A (14)	Carbon Group	4	8A (18)	Noble Gases	8

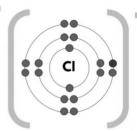
2

Subatomic Particles

Octet Rule


Atoms are the most stable when they have 0 or 8 valence electrons.

Ion – Atom that has lost or gained e⁻ to fulfil the octet rule


Sodium (Na) loses 1e⁻ to form a **cation**

1 val e^{-} \rightarrow 0 val e^{-}

Cation = + Ion

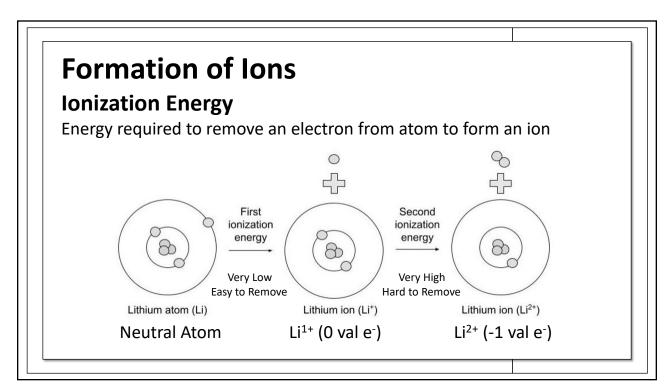
sodium cation

chloride anion

Chlorine (Ca) gains 1e⁻ to form an **anion**

7 val e⁻ →

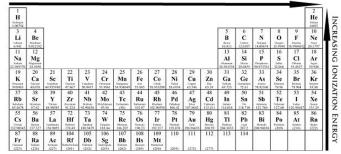
8 val e⁻


Anion = - Ion

3

Valence Electron and Ion Structure

The following chart displays the basic atomic structure including the valence electrons and charges for atoms and ions of representative (1A-8A) elements


Group	1A	2A	1B – 10B	3A	4A	5A	6A	7A	8A
Number	1	2	3 - 12	13	14	15	16	17	18
Valance	1	2	2	3	4	5	6	7	8
Electrons (e ⁻)									
Atom Type	Alkali Metals	Alkali Earth Metals	Trans. Metals	Earth Metals	Carbon Group	Picogens	Chalcogen	Halogens	Noble Gases
Ion Charge	+1	+2	Var.	+3	+4	-3	-2	-1	0
Lose e Gain e	Lose 1	Lose 2	Var.	Lose 3	Lose 4	Gain 3	Gain 2	Gain 1	Gain 0
Ion Valence Electrons (e ⁻)	0	0	0	0	0	8	8	8	8

5

Formation of Ions Ionization Energy Trends

INCREASING IONIZATION ENERGY

Not every element always falls the IE trend, for example noble gases (8A/18) don't form ions (full octet)

Ionization Energy

Group Trend (*left to right*) Increases Across Table

More val e- make it harder to remove val e- from atom

Period Trend (*up and down*)
Decreases Down Table

Electrons in higher Energy Levels are pushed away from nucleus by inner e

6