Introduction to Chemistry

Two Types of Data Analysis

Quantitative Measurements

Measurements where data is collected using a measuring tool to compare to other measurements of the same type

Qualitative Measurements

Measurements where no data is collected but comparisons are made using the main human senses (sight, smell, touch, sound, taste)

Examples

Weight (mass) Size (volume) Temperature (*heat*) Length

Comparing reaction speed or color made Smell, texture (touch), Sound

Introduction to Chemistry

Taking Good Measurements Accuracy

How close a measurement is taken relative to the correct true value

Precision

How close a series of measurements taken together are to each other

Measurement sets can be accurate and/or precise. A and P are not linked to each other directly, but independent terms

high precision

High accuracy, low precision

Low accuracy, high precision

Low accuracy, low precision

3

Introduction to Chemistry

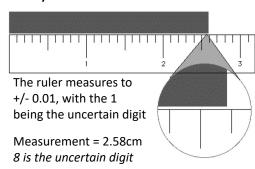
Determining Accuracy and PrecisionKnown Correct (*accurate*) Measurement:

 $12.0 \pm 0.5 \text{g CO}_2(q)$

Precise Measurement defined as \pm 0.3g or better

Good Accuracy	Good Accuracy	Poor Accuracy	Poor Accuracy
Good Precision	Poor Precision	Good Precision	Poor Precision
12.0g	11.7g	16.4g	5.6g
12.1g	12.4g	16.5g	18.4g
12.0g	11.5g	16.3g	8.4g
12.1g	11.8g	16.4g	12.9g
11.9g	12.5g	16.5g	10.4g

 ± 0.1 g, 11.9 - 12.1 ± 0.5 g, 11.5 - 12.5 ± 0.1 g, 16.3 - 16.5 ± 12.8 g, 5.6 - 18.4


Introduction to Chemistry

Accuracy in Written Measurements

Any measurement can have any number of true (known) and one estimated (unknown) digits in its quantity.

In any measurement one uncertain digit always exists*

The uncertain digit is always one digit smaller than the resolution, the smallest marking on the scale or measuring device

* Numbers know exactly (counts / conversion factors) have no uncertain digits

Introduction to Chemistry

Writing Accuracy in Measurements

Any measurement can have any number of true (*known*) and one estimated (unknown) digits in its quantity.

Ex: 345.20g NaCl **Ex:** 0.928L Water

Known digits Unknown digit Known digits Unknown digit 345.2 (4) 0 (1) 0.928 (3)* 8 (1) System of Measure Label mass (g) NaCl volume (L) Water

6

^{*} Leading zeros are called *placeholders* and are not digits at all, they just locate the decimal point in the measurement