Lab 2 – Density of a Solid and a Liquid

60 Points

Introduction

In this lab we will be solving for density, the mass (weight) of an object based on the object's volume (*size*). To solve for density we need to measure the volume and mass of the sample using the following lab techniques:

Volume by Length Measurements

The volume of a solid is determined through a mathematical equation based on the shape of the object where the volume is measured in milliliters (mL); $1 \text{mL} = 1 \text{cm}^3 = \text{cm} \bullet \text{cm} \bullet \text{cm}$

Cube:
$$V = 1 \bullet w \bullet h$$
 Cylinder: $V = \pi \bullet r^2 \bullet h$ $1 = \text{length}, w = \text{width}, h = \text{height}$ $\pi = 3.14, r = \text{radius}, h = \text{height}$

Density is found using the density equation:

$$D = m / v$$
, where $D = Density (g/mL)$, $m = mass (g)$, and $v = volume (mL)$

Volume by Water Displacement

The volume of a solid can also be found using the displacement method. To use the displacement method the initial volume (*initial*, *without solid*) and final volume (*with solid*) using the equation below:

$$V_{\text{solid}} = V_{\text{after}} - V_{\text{start}}$$

Density Tables for Metals

Element	Aluminum	Brass	Copper	Gold	Iron	Lead	Nickle
Density	2.60g/mL	8.50g/mL	8.96g/mL	19.3g/mL	7.87g/mL	11.3g/mL	8.90g/mL
Element	Platinum	Silver	Steel	Tin	Tungsten	Vanadium	Zinc
Density	21.5g/mL	10.5g/mL	7.86g/mL	7.26g/mL	4.51g/mL	6.0g/mL	7.14g/mL

Lab Procedure

Part 1 – Density of a Solid

Volume by Measurement

- 1. Measure radius and height of the cylinder
- 2. Use equation above to find volume of the cylinder
- 3. Measure mass of solid and solve for density
- 4. Determine metal based on chart above/properties

Volume by Displacement

- 1. Add water to the halfway mark on a graduated cylinder (record volume)
- 2. Add metal and record new volume (record volume)
- 3. Subtract new volume from original volume
- 4. Use volume and mass above to solve for density
- 5. Determine metal based on chart above/properties

Data Table with Initial Calculations (V_{metal} and Radius)

Metal	Diameter	Radius	Height	V_{start}	Vafter	V _{metal}	Mass
Ivictal	(cm)	(r=d/2)	(cm)	(ml)	(ml)	$(V_{after} - V_{start})$	(g)
Silver (Shiny)	1.bam	$= \frac{1.6cm}{2}$ $= 0.8cm$	3.0cm	50.0mL	57.2mL	= 7.2 mL	70. lg
Silver							
(Not							
Shiny)							
Gold							

Calculations

Density (Solid Measurements)

Bensity (South Measurements)		
Example Silver (Shiny) Meta	Silver (Not Shiny)	Gold
Vcylinder = T(· r ² · h Vcyl. = T(· (0.80cm) ² · 3.0cm Vcyl = 6.03cm ³ [lal = lcm ³] = 6.03 ml		
$D = \frac{m}{v} m = 70.19 V = 6.03 mL$		
$D = \frac{70.19}{4.03 \text{nL}}$		
D = 11.63g/mL		

Density (Volume by Different Measurements)

Silver (Shiny)	Silver (Not Shiny)	Gold
Veylinder = V fino1 - Vini Veyl. = 57.2mL - 50.0mL = 7.2mL		
$D = \frac{m}{V} m = 70.1q V = 7.2 mL$ $D = \frac{70.1q}{7.2 mL}$ $= 9.74 q/mL$		

Results

What were the metals for each metal cylinder?

Compare results from each density calculations to chart on front of lab document

Cylinder	Silver (Shiny)	Silver (Not Shiny)	Gold
Metal	Silver/Lead		