

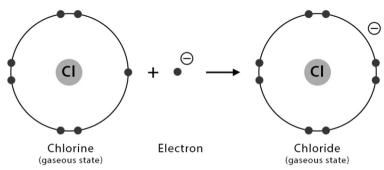
13

Not every element always falls the IE trend, for example noble gases (8A/18) don't form ions (full octet)

Ionization Energy

Group Trend (*left to right*)
Increases Across Table

More val e⁻ make it harder to remove val e⁻ from atom


Period Trend (*up and down*) Decreases Down Table

Electrons in higher Energy Levels are pushed away from nucleus by inner e⁻

Formation of Ions

Electron Affinity

Energy lost or gained when an atom gains an electron

Energy released: EA = -349 kJ/mol

Chloride Anion (-1 anion)

Chlorine Atom (Neutral)

15

Formation of lons Electron Affinity Trends

INCREASING ELECTRON AFFINITY

H Hydrigen 1.00794																	He
Li Li 6.941	4 Be ***********************************											5 B 10.811	6 C Carbon 12.0107	7 N Naupn 1400674	8 O Ouges 15,994	9 F 18 9984032	10 Ne 50.1797
11 Na 50800 2,989710	12 Mg 24,3050											13 Al 26.981538	14 Si 58cm 28.0855	15 P Phophose 30.973761	16 S Natio 32,066	17 CI (Messe 35.4527	Ar Ar Aspen 39.948
19 K	Ca Cacton 40.078	21 Sc tondum 44.951910	22 Ti Therium 47,867	V V Viniden 50.9415	Cr Chronica 51,9961	25 Mn Stanganose 54 918049	26 Fe	27 Co	Ni Ni Noted 58,4004	Cu Cuger 63.546	30 Zn	Ga Gatam 69.723	Ge Ge	33 As Asens 24.92160	34 Se Selemen TN 96	Br tomac 71,934	Kr Kr Krypen 83,80
Rb Rb Manufacture 85,4678	38 Sr Smoton 87.62	39 Y Yasun 88.90585	40 Zr Zroman 91,224	41 Nb Notion 92,99638	Mo Mo	Te Tetadarium	Ru Ru 101.07	45 Rh Rh Rhodan 102,90550	Pd Pd Paladom 105,42	47 Ag 58har 107.8682	48 Cd	49 In inten 114.818	50 Sn Tin 118,710	51 Sb Animaly 121,760	Te Totalian 127,60	53 I lodos 126.90447	54 Xe Xsea 131.29
55 Cs	56 Ba	57 La	72 Hf Helmon 178,49	73 Ta 180,9479	74 W Impair 183,84	75 Re 186.207	76 Os	77 Ir 192.217	78 Pt	79 Au God 196.96655	80 Hg	81 TI Datas 204,3833	82 Pb Leal 207.2	83 Bi (team) 208.98038	84 Po	85 At (210)	86 Rn Radon (222)
Fr G2231	Ra Ra Radium (226)	89 Ac (227)	Rf Rf Sotterfer dear (261)	105 Db Ddman (212)	106 Sg (263)	107 Bh (262)	108 Hs	Mt Stematical GMG	110	(272)	112 gm	113	114				

Metals (groups 1A – 3A + transition elements) do not lose electrons, so the electron affinity values are much higher than expected

Electron Affinity

Group Trend (*left to right*)
Increases Across Table

Atoms closer to an octet of e⁻ lose more energy when forming ions

Period Trend (*up and down*)
Decreases Down Table

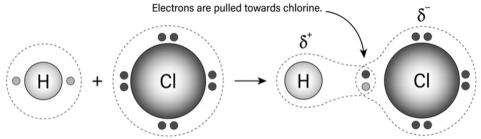
Lower atoms are pulled less by p⁺ and lose less energy

Formation of Ions

Comparing Ionization Energy and Electron Affinity

Energy required to remove an electron from atom to form an ion

Element Type	Ionization Energy	Electron Affinity
Metals (0 – 4 Valence Electrons)	Low IE (<i>easy to lose e</i> -) Atoms want to lose e-	Low EA (<i>Low desire to gain e</i> -) Atoms don't want e-
Non-Metals (5 – 8 Valence Electrons)	High IE (<i>hard to lose e</i> -) Atoms don't want to lose e-	High EA (<i>High desire to gain e</i> -) Atoms want to gain e ⁻

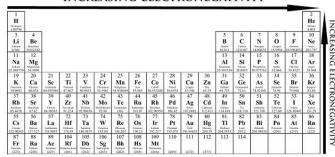

In general: Atoms always want to lose heat (q), - to become more stable

17

Formation of Ions

Electronegativity

Atoms ability to attract electrons towards itself


Electronegativity: H(2,2) < Cl(3,6)

Metals/Hydrogen – Low Electroneg. Non-Metals – High Electroneg.

Higher Electronegativity = More pull on electrons towards itself in bond

Formation of Ions Electronegativity Trends

INCREASING ELECTRONEGATIVITY

Metals (groups 1A - 3A + transition elements) want to lose electrons, so they generally have a low attraction to their own valence electrons

Electronegativity

Group Trend (*left to right*) Increases Across Table

Atoms have a stronger attraction to e⁻ the closer they are to an octet of e⁻

Period Trend (*up and down*)
Decreases Down Table

Lower atoms have more inner e- to the val. e-