College Prep Chemistry of the Earth System

Assignment 7F – Calorimetry

20 Points

Specific Heat Equation Forms

Specific Heat	q = c·1	m·ΔT	c =	q m·ΔT	m =	$\frac{q}{c \cdot \Delta T}$	$\Delta T =$	q c·m
Change in T	$\Delta T = T_{final} - T_{ini}$		Heat Transfer	$q_{metal} = -q_{water}$				

Solve the following heat capacity problems

$c_{water} = 4.184 \text{J/°C}$, $m_{water} = 50.0 \text{g}$ $T_{ini} = 100 \text{°C}$, $T_{final} = 89.3 \text{°C}$								
$\Delta T = \underline{\qquad}^{\circ}C, q_{water} = \underline{\qquad}J,$	_							
ΛT =								

$$\Delta T =$$

$$c_{water} = 4.184 \text{J/°C} , m_{water} = 75.0 g$$

$$T_{ini} = 100 \text{°C}, T_{final} = 69.2 \text{°C}$$

$$\Delta T = \underline{} \text{°C}, q_{water} = \underline{} \text{J}, q_{metal} = \underline{} \text{J}$$

$$\Delta T = \underline{} \text{ T} = \underline{} \text{ T}$$

$$q_{
m water}$$
 = $q_{
m metal}$ =

$$\begin{array}{c|c} q_{metal} = 3190.38J & q_{water} = \\ & T_{ini} = 100^{\circ}C, \, T_{final} = 72.48^{\circ}C \\ \Delta T = \underline{\hspace{2cm}}^{\circ}C, \, m_{water} = \underline{\hspace{2cm}}g \\ & \Delta T = \end{array}$$

$$m_{ ext{water}} =$$

$$m_{
m water} =$$

$$q_{metal} = 2835.38J$$
 $q_{water} =$
$$T_{ini} = 100^{\circ}C, T_{final} = 59.31^{\circ}C$$

$$\Delta T = __{\circ}C, m_{water} = __{g}$$

$$\Delta T =$$

$$m_{water} =$$

$$m_{water} =$$