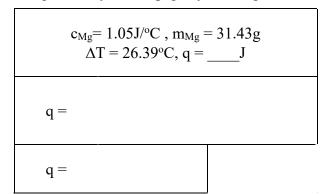
Name	Period
------	--------

College Prep Chemistry of the Earth System Assignment 7G – Unit 7 Review

40 Points

Define the following terms used in energy


Term	Definition	Term	Definition
Force		Temperature	
Work		Heat	
Kinetic Energy		Exothermic	
Potential Energy		Endothermic	
Heat Capacity		Specific Heat Capacity	
Calorimetry		Specific Heat Constant	

A -	$q_0 = 18J$ $q_f = 103J$	В	q _o = 91J q _f = 37J
Heat (q) System		Heat (q) System	
Heat (q) Surround		Heat (q) Surround	
Endo/Exothermic		Endo/Exothermic	

Specific Heat Equation Forms

Specific Heat	$q = c \cdot m \cdot \Delta T$ $c =$	$\frac{q}{m \cdot \Delta T} m = \frac{q}{c \cdot \Delta T}$	$- \Delta T = \frac{q}{c \cdot m}$
Change in T	$\Delta T = T_{final} - T_{ini}$	$T_{final} \Delta T + T_{ini}$	$T_{ini} = T_{final} - \Delta T$

Complete the following specific heat questions

$$c_{Al}{=}~0.910 \text{J/°C}~,~m_{Al}{=}~124.82 g$$

$$T_{ini}{=}~94.27 ^{\circ}\text{C},~T_{final}{=}~124.73 ^{\circ}\text{C}$$

$$q{=}__J$$

$$\Delta T=$$

$\Delta T =$	
q =	
q =	

	-739.28 J, $c_{Ni} = 0.44$ J/ g° C = 89.28° C, $T_{final} = 35.28^{\circ}$ C m =g
$\Delta T =$	
$\Delta T =$	
m = -	
m =	

		J
q = 1128.30J, m = 173.39g, $c_{Fe} = 0.45J/g^{\circ}C, \Delta T ={\circ}C$		
ΔΤ =		
ΔT =		