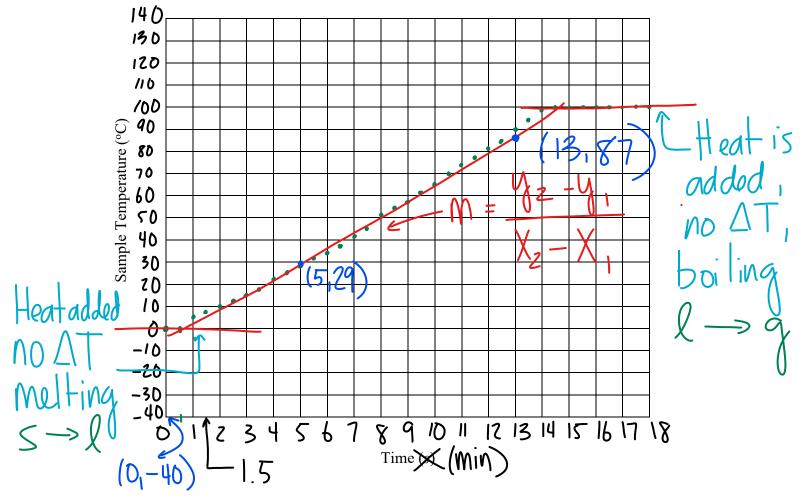
Name	Period
------	--------

Lab 8 – The Heat Curve of a Liquid

Introduction

50 Points

In this lab we will be use laboratory hot plate and thermometer to record temperature data for the heating of a water based sample. By recording the temperature over a set amount of time, one recording every 30 seconds, we can build a graph of the heat curve of water. By calculating the slope of the graph we can find the temperature change per second based on the heat capacity.


Procedure

- 1. Prepare lab station based on the example given in class. The thermometer should be held in a thermometer clamp and move into the liquid sample before heating begins.
- 2. Obtain a 250mL beaker add 2 3 ice cube, then fill it to the 250mL mark. Ice cubes will likely float to the top of the beaker.
- 3. Record the initial temperature reading and record on data table.
- 4. Turn on heat and allow hot plate to heat water sample. Record temperature of the sample every 30 seconds until the sample boils for 3 minutes total.

Data Table For Time and Temperature for heat curve graph

Time X	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	7.5
Temp		\cap	7	7	10	17	17	10	11	20	20	21	21	20	<i>/</i> 1.1	111
Sample	\cup)	?		7	<u> </u>	רו	10	77	2)	7	r T	77	کلا	4	46
Time X	8	8.5	9	9.5	10	10.5	11	11.5	12	12.5	13	13.5	14	14.5	15	15.5
Temp 1	71	C4	<i>T7</i>	11	17	71	74	70	91	QL	an	911	00	1/1/1	ΙΛΛ	IVV
Sample	21	7	<u>ر</u>	0	02	7	7	18	01	00		7	10	100	טו	100

Calculations

Slope of Graph (Temperature vs Time)

Graph Data Points

Data Point	Time (x-axis)	Temperature (y-axis)
1	x, 5	29
2	13	x 7

Slope of Graph $(m = [y_2 - y_1]/[x_2 - x_1])$

property.	
m = .	87-29
	13-5 X2-X1
m =	7.25 °C/min
ΔΤί	5 7.25°C in 1 min

Lab Questions

Based on the graph, what is the melting point and boiling point of water?	Was the slope of the graph positive or negative? What does the slope of the graph determine?			
Melting Point (MP) (Sarting temp)	Slope is +			
Boiling Point (BP) (FIVAL TRMP)	OC ATinc. W/Fime			
In the heat curve, why does the temperature not change at the beginning of the curve?	In the heat curve, why does the temperature not change at the end of the curve?			