Lab 2 – Density of a Solid and a Liquid

40 Points

Introduction

In this lab we will be solving for density, the mass (weight) of an object based on the object's volume (*size*). To solve for density we need to measure the volume and mass of the sample using basic laboratory techniques.

Density is found using the density equation:

$$D = m / v$$
, where $D = Density (g/mL)$, $m = mass (g)$, and $v = volume (mL)$

Volume by Water Displacement

The volume of a solid can also be found using the displacement method. To use the displacement method the initial volume (*initial*, *without solid*) and final volume (*with solid*) using the equation below:

$$V_{solid} = V_{after} - V_{start}$$

Density Tables for Metals

Element	Aluminum	Brass	Copper	Gold	Iron	Lead	Nickle
Density	2.60g/mL	8.50g/mL	8.96g/mL	19.3g/mL	7.87g/mL	11.3g/mL	8.90g/mL
Element	Platinum	Silver	Steel	Tin	Tungsten	Vanadium	Zinc
Density	21.5g/mL	10.5g/mL	7.86g/mL	7.26g/mL	4.51g/mL	6.0g/mL	7.14g/mL

Lab Procedure

Density of a Solid

Volume by Displacement

- 1. Add water to the halfway mark on a graduated cylinder (record volume)
- 2. Add metal and record new volume (record volume)
- 3. Subtract new volume from original volume
- 4. Use volume and mass above to solve for density
- 5. Determine metal based on chart above/properties

Data Table with Initial Calculations (V_{metal} and Radius)

Metal	$rac{ m V_{initial}}{(ml)}$	$rac{ m V_{final}}{(ml)}$	$V_{ ext{metal}} \ (V_{ ext{final}} - V_{ ext{initial}})$	Mass (g)
Dark Silver				
Light Silver				
Orange Yellow				

\sim 1	1 1		
(ˈal	cm	latı	ons
va.	Cu	au	OHIO

Density (Solid Measurements)

D = Mass	(m)	$/V_{metal}$
----------	-----	--------------

	(South Filedistil Citterius)
	Silver (Shiny)
D = -	
D=	

Silver (Not Shiny)			
D = -			
D =			

Orange/Yellow			
D =			
D =			

Results

What were the metals for each metal cylinder?

Compare results from each density calculations to chart on front of lab document

Cylinder	Silver (Shiny)	Silver (Not Shiny)	Orange/Yellow
Metal			