
Classifying Elements Döbereiner's Elemental Triads

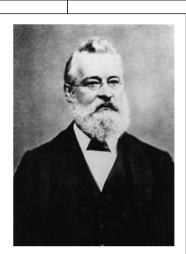
Elements repeat properties in groups of three based on mass. The mass of the middle element is the average of the mass of the first and third element.

Set I		Set	п	Set-III		
Element	Atomic mass	Element	Atomic mass	Element	Atomic mass	
Calcium	40	Lithiu m	7	Chlorin e	35.5	
Strontiu m	87.5	Sodium	23	Bromin e	80	
Barium	137	Potassi um	39	Iodine	127	
Average atomic of calcium barium $= \frac{40+13}{2}$	masses m and	Average of the atomic masses of lithium and potassium $= \frac{7+39}{2} = 23$		Average of the atomic masses of chlorine and iodine $= \frac{35.5 + 127}{2} = 81.2$		
Atomic r strontium		Atomic r sodium =		Atomic mass of bromine = 80		

Johann Döbereiner

German Chemist

1780 – 1840AD

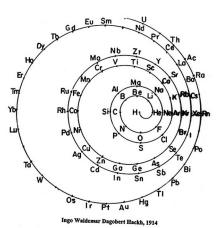

2

Classifying Elements Newland's Law of Octaves

Table 4.2 Newland's table of octaves (oct- eight)

NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.
H1	F8	Cl 15	Co&Ni 22	Br 29	Pd 36	I 42	Pt & Ir 50
Li 2	Na 9	K 16	Cu 23	Rb 30	Ag 37	Cs 44	Os 51
G 3	Mg 10	Ca 17	Zn 24	Sr 31	Cd 38	Ba & V45	Hg 52
BO 4	Al 11	Cr 19	Y 25	Ce & La33	U40	Ta 46	Ti 53
C 5	Si 12	Ti 18	In 26	Zr 32	Sn 39	W 47	Pb 54
N 6	P 13	Mn 20	As 27	Di&Mo 34	Sb 41	Nb 48	Bi 55
O7	S 14	Fe 21	Se 28	Ro&Ru 35	To 43	Au 49	Th 56

Elements repeat properties when arranged in rows (*periods*) of 8 elements (*the octave*)

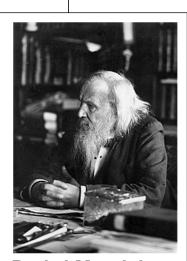

John Newlands

British Chemist

1837 – 1898AD

Classifying Elements Hinrick's Spiral Periodic Table

Elements repeat properties when arranged into a double spiral. The spiral doubles over when elements of similar properties come near each other

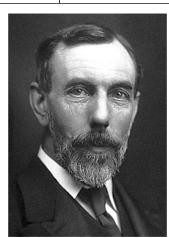

Gustavus Hinrichs
German Chemist
1836 – 1924AD

4

Classifying Elements Mendeleev's Periodic Table

0	H 1.01	Ш	Ш	IV	V	VI	VII			
He 4.00	Li 6.94	Be 9.01	B 10.8	C 12.0	N 14.0	O 16.0	F 19.0			
Ne 20.2	Na 23.0	Mg 24.3	AI 27.0	Si 28.1	P 31.0	• S 32.1	CI 35.5		VIII	
Ar 40.0	K 39.1	Ca 40.1	Sc 45.0	Ti 47.9	V 50.9	Cr 52.0	Mn 54.9	● Fe 55.9	Co 58.9	Ni 58.7
	Cu 63.5	Zn 65.4	Ga 69.7	Ge 72.6	As 74.9	Se 79.0	Br 79.9			
Kr 83.8	Rb 85.5	Sr 87.6	Y 88.9	Zr 91.2	Nb 92.9	Mo 95.9	Tc (99)	Ru 101	Rh 103	Pd 106
	● Ag 108	Cd 112	In 115	• Sn 119	Sb 122	Te 128	1 127			
Xe 131	Ce 133	Ba 137	La 139	Hf 179	Ta 181	W 184	Re 180	Os 194	lr 192	Pt 195
	●Au 197	● Hg 201	Ti 204	● Pb 207	Bi 209	Po (210)	At (210)			
Rn (222)	Fr (223)	Ra (226)	•Ac (227)	●Th 232	●Pa (231)	● U 238		Lanth	nanide s	eries
	Dobere	iner's tria	nds	Known to Mendeleev Actinide series Known to Ancien						

Elements repeat properties when arranged by atomic mass. (rows and periods)



Dmitri Mendeleev Russian Chemist 1834 – 1907AD

Classifying Elements Discovery of the Noble Gases

Ramsay along with other scientists of the time purified a new inert (can't react) gas, the noble gases, the final group of the periodic table

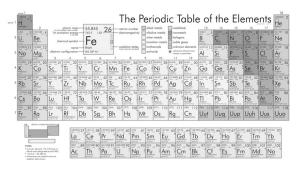
Noble Gas:	First discovered	Who Discovered		
Helium	August 18 th , 1869 [11]	Pierre-Jules-César Janssen		
Neon	1898	Sir William Ramsay and Morris W. Travers		
Argon	1894	Sir William Ramsay and Lord Rayleigh		
Krypton	May 30, 1898 [12]	Sir William Ramsay and Morris W. Travers		
Xenon	July 12, 1898 [13]	Sir William Ramsay		
Radon	1900	Friedrich Ernst Dorn		
Unnoctium	2002	Scientists in the Joint Institute for Nuclear Research and Lawrence Livermore National Laboratory [13]		

William Ramsay Scottish Chemist 1852 – 1916AD

6

Classifying Elements Modern Periodic Table

With the discovery of the subatomic particles (e⁻, p⁺, and n^o), and the nucleus, the modern periodic table was arranged by atomic number.

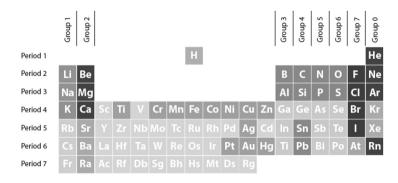


Periodic Table

The **periodic table** is a chart (*table*) of elements arranged based on their **properties** (*the attributes that make something unique in science*)

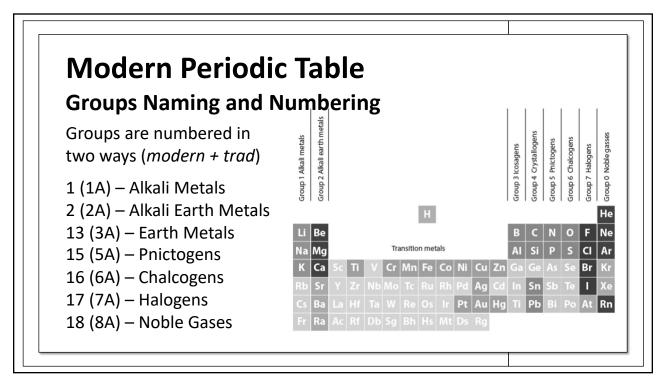
Element Properties

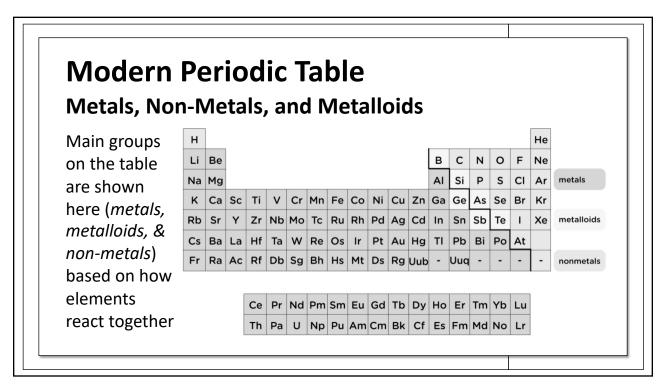
Elements have **properties** that make them *different from all other elements* based on structural similarities in protons (p⁺), electrons (e⁻) and orbital structure


The **periodic table** shown above illustrates the common *groupings* of elements based on the element characteristics

8

Modern Periodic Table


Groups and Periods


Elements are arranged into groups (*up and down*), and periods (*left to right*) based on atomic number.

The periodic table is arranged into 8 groups and 7 periods.

a

Modern Periodic Table Transitional Metals Locate the transition metals 3 - 12, 1B - 10Bnoble gases Al Metals in the center of the table that react and Ca Cr Mn Fe Cu Co Zn Ga 8,90585 39 91.224 40 92,90638 41 95,96 42 98 43 101.07 44 114.818 45 behave different from Sr Zr Nb Mo Tc Rh Ru Pd Ag Cdln other metals in groups Os Ba Hf W Re Lυ Ta Hg -Ir 1A (1) and 2A (2). Metals [262] 103 [261] 104 [262] 105 [266] 106 [264] 107 277) 108 Db Rf Sg Bh Hs Mt Ds Uut in 3A (13), and 4A (14) have properties like Pm Nd Sm transition metals.