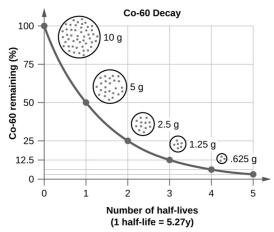

Nuclear Decay Rate

The nuclear decay rate (*speed*) is how fast a particle will decay into a more stable form via alpha, beta -, beta +, or electron capture decay.

An isotope's decay rate is based on the **stability of the isotope** that will decay as part of the decay process.


Nuclear Decay Rate

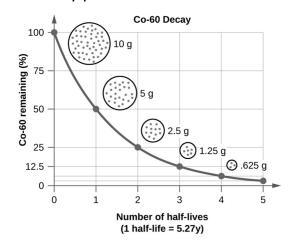
More Stable – Slower Rate Less Stable – Faster Rate

13

Nuclear Half Life

The time for particles to decay is based on the stability of particles is a isotopes Half-Life time.

The **Half-Life** of a particle is the time it takes for half (50%) of the particles to decay from the original isotope state.


The graph of a decay curve shows the rate of decay slows down over time

Rate = $\frac{\text{Remaining Undecayed Isotopes}}{\text{Decay Time (}Based on Half-Life)}$

14

Decay Process

The decay process shows a decrease in total isotopes over time.

Decay Time	Number Half Lives	Remaining Isotopes	Particles Decayed
0min	0 HL	500	0
25min	1 HL	250	250
50min	2 HL	125	375
75min	3 HL	63	438
100min	4 HL	32	470
125min	5 HL	16	486
150min	6 HL	8	494

Co-60 Decay Process (HL = 25min)

15