



4

Subatomic ParticlesOrbital Filling and the PT

Down a group on Periodic Table
Additional orbitals form as the atom
gets larger down the table making the
atom larger overall down the table.

Each larger number is a larger atom $1s \rightarrow 2s \rightarrow 3s \rightarrow 4s \rightarrow 5s \rightarrow 6s \rightarrow 7s$

Orbital Types (s, p, d, and f) are the locations elections fill to make the atom larger as additional electrons are added.

1s		1s
2s		2p
3s		3р
4s	3d	4p
5s	4d	5р
6s	5d	6р
7s	6d	7p

4f	
5f	

The Periodic Table diagram showing the increasing number of each orbital (*s*, *p*, *d*, *f*) as more electrons are added to atomic structures.

Subatomic Particles

Orbital Filling and the PT

Across a period on the PT

Additional electrons get added to the energy levels (1 - 7) as electrons are added across the table

S and P Orbital Filling

Two electrons are added to the s orbitals, then adding six electrons to the p orbitals

ns¹ ns² np¹ np² np³ np⁴ np⁵ np⁶ 1e⁻ 2e⁻ 3e⁻ 4e⁻ 5e⁻ 6e⁻ 7e⁻ 8e⁻

1s		1s
2s		2р
3s		3р
4s	3d	4p
5s	4d	5p
6s	5d	6р
7s	6d	7р

4f	
5f	

Electrons fill across the table within an energy level (1-7). D orbitals are used for larger heavier elements.

6

Atomic Structure and Groups

Valence Electrons and Energy Levels

Group	Valence Electrons	Group	Valence Electrons	Period	Energy Levels		Period	Energy Levels	
1A 1	1	4A 14	4	1	0 Inner 1 Outer	1 Total	5	4 Inner 1 Outer	5 Total
2A 2	2	5A 15	5	2	1 Inner 1 Outer	2 Total	6	5 Inner 1 Outer	6 Total
1B - 10B 3 - 12	2*	6A 16	6	3	2 Inner 1 Outer	3 Total	7	6 Inner 1 Outer	7 Total
3A 13	3	7A 17	7	4	3 Inner 1 Outer	4 Total			
		8A 18	8						

The number of valance electrons is based on the "A" numbering (1A, 2A, 3A... 1, 2, 3...)

7