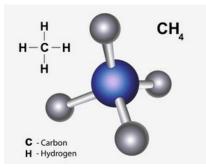
Covalent Nomenclature

Every Covalent Molecule is named one of two ways:

1. Prefixes: Binary Covalent


2. Organic: Larger Molecules (by type)

Covalent Molecules can come in many formula variations based on structure

Formulas for Example Carbon Molecules

CH ₄	C_2H_6	C ₂ H ₄	C ₂ H ₂
C ₃ H ₈	C_3H_6	C ₃ H ₄	C ₄ H ₁₀
C ₄ H ₈	C ₄ H ₆	C ₄ H ₄	C ₅ H ₁₂

Some molecules have multiple names

Binary: Carbon Tetrahydride Organic: Methane

2

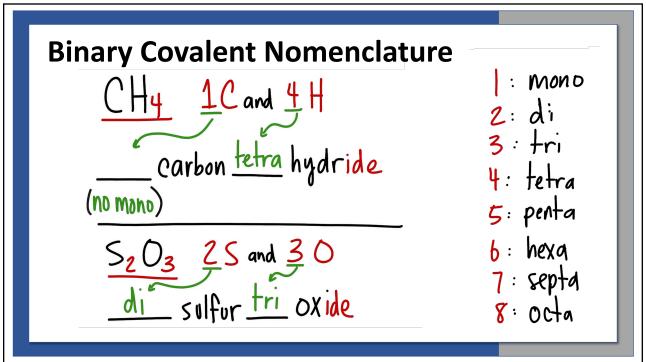
Binary Covalent Nomenclature

Covalent Molecules are named based on the *prefix* model. The *prefix* is a number before each atom in a binary covalent molecule

Prefix (no mono-) First Element Prefix Second Element (-ide)

Binary Molecule Examples

CH₄: Carbon Tetrahydride


S₂O₂: Disulfur Dioxide

NCl₃: Nitrogen Trichloride

Covalent Molecule Prefixes

Number Atoms	Prefix	Number Atoms	Prefix
1	mono	6	hexa
2	di	7	hepta
3	tri	8	octa
4	tetra	9	nona
5	penta	10	deca

3

Binary Covalent Nomenclature $\frac{\text{tri carbon hexachbride}}{(3)(C)} \xrightarrow{(6)} (C1)$ $C C1 \longrightarrow C_3C1_6$ $\frac{\text{nitrogen di oxide}}{(1)(N)} \xrightarrow{(2)(O)} (O)$ $N_1O_2 \longrightarrow N_2O_2$ 8: octa

4