
Atomic Elements

An **element** is the most basic form of an atom based on the number of protons (p^+)

The number of p^+ is also known as the **atomic number** of an atom

The **atomic number** is the number of protons (p^+) and electrons (e^-) in atom

The **element** is identified by **element symbol** (H), and **element name** (Hydrogen) as shown in the element

A **periodic square** from a table of elements (*Periodic Table*) showing all the element info

2

Element Arrangement on Periodic Table

Groups are the up and down rows with elements based on the **number of valence electrons** (val. e^-), and are numbered 1 – 18, or 1A – 8A and 1B – 10B

Periods are the left to right rows based on the number of **energy levels**, or the size of the atom, and are numbered 1 – 7.

1	1A	1	2A	2
3		4		
11	12			
19	20			
55	56			
7	8			
87	88			

↑
group
↓

13	14	15	16	17	18
5	6	7	8	9	8A

period ← →

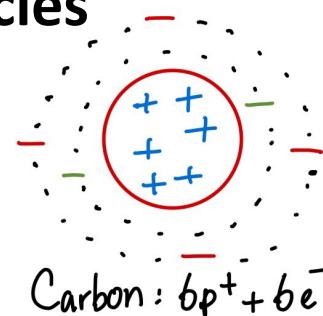
Groups: up and down (18 groups*, 1-18)

* Traditional: 1A-8A, 1B - 10B

Periods: left to right (7 periods, 1-7)

3

Counting Subatomic Particles


Proton and Electron Relationships

Atoms must remain neutral due to the relationships between electrons (e^-) and protons (p^+)

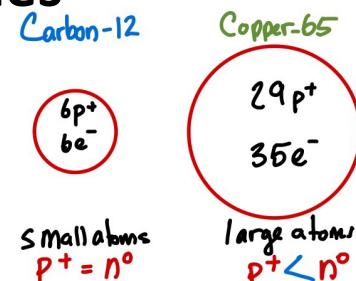
Carbon: $6p^+ (+6)$ and $6e^- (-6) = 0$

The number of electrons (e^-) or protons (p^+) in an atom is called the **Atomic Number**.

Protons (p^+) = Electrons (e^-) is a **neutral atom**

Neutral Atom	$\#p^+ = \#e^-$
Atomic #	$\#p^+ = e^-$

4


Counting Subatomic Particles

Proton and Neutron Relationships

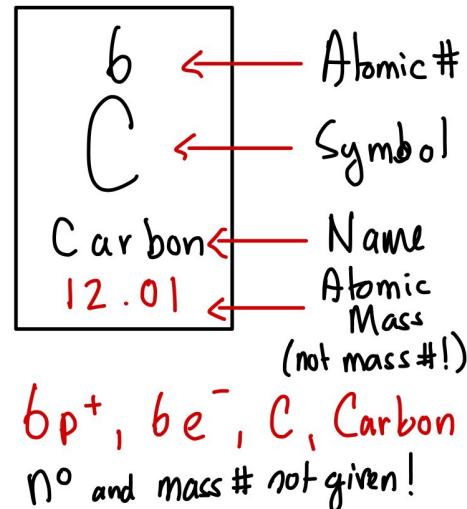
An atom's nucleus contains both protons (p^+) and neutrons (n^o).

Smaller atoms often have p^+ being equal to n^o . Larger atoms more n^o than p^+ due to the need to minimize protons (p^+) repulsion

The **Mass Number** is the sum of the protons (p^+) and neutrons (n^o) in an atom's nucleus

Mass #	$= p^+ + n^o$
Atomic Mass	$=$ Particles in Nucleus

5


Counting Subatomic Particles

Understanding Periodic Table Squares

The square on the periodic table include the following parts:

- **Atomic Number** (p^+ and e^-)
- **Element Symbol**
- **Element Name**
- **Average Atomic Mass**

The **average atomic mass** is the average mass of all forms of an element, the **element isotopes**, and is not the **mass number** ($p^+ + n^o$)

6

Counting Subatomic Particles

Determining Atomic Isotope Parts

Elements may contain multiple **isotopes**, the form of an atom based on the protons (p^+) and neutrons (n^o). The number of neutrons (n^o) and mass number (mass #) are not on the periodic table

Isotope Notation

Scandium - 45
Element Mass#

$^{45}_{21} \text{Sc}$ ← Mass#
← Element Symbol
← Atomic #

Overall Subatomic Particle Relationships

Atomic # = $p^+ = e^-$
= Element Name
= Element Symbol

Mass # = $p^+ + n^o$

n^o = Mass # - Atomic #
 n^o not on periodic table

7